Inference for the Normal Mean with Known Coefficient of Variation
نویسندگان
چکیده
Inference for the mean of a normal distribution with known coefficient of variation is of special theoretical interest because the model belongs to the curved exponential family with a scalar parameter of interest and a two-dimensional minimal sufficient statistic. Therefore, standard inferential methods cannot be directly applied to this problem. It is also of practical interest because this problem arises naturally in many environmental and agriculture studies. In this paper we proposed a modified signed log likelihood ratio method to obtain inference for the normal mean with known coefficient of variation. Simulation studies show the remarkable accuracy of the proposed method even for sample size as small as 2. Moreover, a new point estimator for the mean can be derived from the proposed method. Simulation studies show that new point estimator is more efficient than most of the existing estimators.
منابع مشابه
ESTIMATING THE MEAN OF INVERSE GAUSSIAN DISTRIB WTION WITH KNOWN COEFFICIENT OF VARIATION UNDER ENTROPY LOSS
An estimation problem of the mean µ of an inverse Gaussian distribution IG(µ, C µ) with known coefficient of variation c is treated as a decision problem with entropy loss function. A class of Bayes estimators is constructed, and shown to include MRSE estimator as its closure. Two important members of this class can easily be computed using continued fractions
متن کاملOn Simple Confidence Intervals for the Normal Mean with Known Coefficient of Variation
In this paper we proposed the new confidence interval for the normal population mean with a known coefficient of variation. In practice, this situation occurs normally in environment and agriculture sciences where we know the standard deviation is proportional to the mean. As a result, the coefficient of variation of is known. We propose the new confidence interval based on the best unbiased es...
متن کاملImplementation of Adaptive Neuro-Fuzzy Inference System (Anfis) for Performance Prediction of Fuel Cell Parameters
Fuel cells are potential candidates for storing energy in many applications; however, their implementation is limited due to poor efficiency and high initial and operating costs. The purpose of this research is to find the most influential fuel cell parameters by applying the adaptive neuro-fuzzy inference system (ANFIS). The ANFIS method is implemented to select highly influential parame...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کامل